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Background 
 Concurrent access to shared data may result 

in data inconsistency 

 Maintaining data consistency requires 
mechanism to ensure the orderly execution 
of cooperating processes 
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Consumer & Producer Problem 

/*consumer*/ 
while (1) { 
 while (counter == 0) ; 
     item = buffer[out]; 
     out = (out + 1) % BUFFER_SIZE; 
     counter--; 
} 

 Determine whether buffer is empty or full 
 Previously: use in, out position 
 Now: use count value 

/*producer*/ 
while (1) { 
    nextItem = getItem( ); 
    while (counter == BUFFER_SIZE) ; 
    buffer[in] = nextItem; 
    in = (in + 1) % BUFFER_SIZE; 
    counter++; 
} 
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Concurrent Operations on counter 
 The statement “counter++” may be implemented 

in machine language as: 
  move ax, counter 
  add    ax, 1 
      move counter, ax 

 The statement “counter--” may be implemented 
as: 

  move  bx, counter 
     sub     bx, 1 
     move  counter, bx 
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Instruction Interleaving 
 Assume counter is initially 5. One interleaving of 

statement is: 
 producer:  move ax, counter      ax = 5 
     producer:  add ax, 1    ax = 6 
     context switch 
 consumer: move bx, counter     bx = 5 
     consumer: sub bx, 1                   bx = 4 
     context switch 
 producer: move counter, ax      counter = 6 
 context switch     
 consumer: move counter, bx     counter = 4 
 The value of counter may be either 4, 5, or 6, where the 

correct result should be 5 
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Race  Condition 
 Race condition: the situation where several 

processes access and manipulate shared data 
concurrently. The final value of the shared data 
depends upon which process finishes last 

 To prevent race condition, concurrent processes 
must be synchronized 
On a single-processor machine, we could disable 

interrupt  or use non-preemptive CPU scheduling 

 Commonly described as critical section problem 
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Critical Section 
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The Critical-Section Problem 
 Purpose: a protocol for processes to cooperate 
 Problem description: 
N processes are competing to use some shared data 
 Each process has a code segment, called critical 

section, in which the shared data is accessed 
 Ensure that when one process is executing in its 

critical section, no other process is allowed to 
execute in its critical section mutually exclusive 
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The Critical-Section Problem 

do { 
    entry section 
        critical section 
    exit section 
        remainder section 
} while (1); 

Get entry permission 

Modify shared data 

Release entry permission 

 General code section structure 
Only one process can be in a critical section 
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Critical Section Requirements 
1. Mutual Exclusion: if process P is executing in its CS, 

no other processes can be executing in their CS 
2. Progress: if no process is executing in its CS and 

there exist some processes that wish to enter their 
CS, these processes cannot be postponed 
indefinitely 

3. Bounded Waiting: A bound must exist on the 
number of times that other processes are allowed 
to enter their CS after a process has made a 
request to enter its CS 

 How to design entry and exist section to satisfy the 
above requirement? 
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Review Slides (1) 

 Race condition? 
 Critical-Section (CS) problem? 4 sections? 
 entry, CS, exit, remainder 

 3 requirements for solutions to CS problems? 
mutual exclusion 
 progress 
 bounded waiting 
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Critical Section Solutions &  
 Synchronization Tools 
 Software Solution 
 Synchronization Hardware 
 Semaphore 
 Monitor 
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Algorithm for Two Processes 

/* Process 0 */ 
do { 
   while (turn != 0) ; 
      critical section 
   turn = 1; 
      remainder section 
} while (1)  

/* Process 1 */ 
do { 
   while (turn != 1) ; 
      critical section 
   turn = 0; 
      remainder section 
} while (1)  

Mutual exclusion?         Progress?       
    Bounded-Wait? 

 Only 2  processes, P0 and P1 
 Shared variables  

 int turn; //initially turn = 0 
 turn = i ⇒ Pi can enter its critical section 

entry 
section 

exit 
section 

Yes No 
Yes 
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Peterson’s Solution for Two Processes 
 Shared variables  
 int turn; //initially turn = 0 
 turn = i ⇒ Pi can enter its critical section 
 boolean flag[2]; //initially flag [0] = flag [1] = false 
 flag [i] = true ⇒ Pi ready to enter its critical section 

//Pi: 
do { 
  flag[ i ] = TRUE; 
  turn = j ; 
  while (flag [ j ] &&  
 turn == j ) ; 
     critical section 
  flag [ i ] = FALSE ; 
     remainder section 
}  while (1) ; 

Enter CS when either: 
1. a process gets its turn  
2. the other process is not ready  
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Proof of Peterson’s Solution 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

 Mutual exclusion: 
 If P0 CS  flag[1] == false || turn == 0 
 If P1 CS  flag[0] == false || turn == 1 

 Assume both processes in CS  flag[0] == flag[1] == true 
  turn==0 for P0 to enter, turn==1 for P1 to enter 

 However, ”turn” will be either 0 or 1 because its value will be set for both 
processes, but only one value will last 

 Therefore, P0 ,P1 can’t in CS at the same time! 
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Proof of Peterson’s Solution 
 Progress (e.g., P0 wishes to enter its CS): 

(1) If P1 is not ready  flag[1] = false  P0 can enter 
(2) If both are ready  flag[0] == flag[1] == true 

If trun ==0 then P0 enters, otherwise P1 enters 
 Either cases, some waiting process can enter CS! 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

(1) 

(2) 
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Proof of Peterson’s Solution 
 Bounded waiting (e.g., P0 wishes to enter its CS): 

(1) Once P1 exits CS  flag[1]==false  P0 can enter 
(2) If P1 exits CS && reset flag[1]=true  
  turn==0 (overwrite P0 setting) P0 can enter 
 P0 won’t wait indefinitely! 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

(1) 

(2) 
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Producer/Consumer Problem 

 Producer process 
while (TRUE) { 
 entry-section( ); 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
 counter++; 
     computing(); 
 exit-section( ); 
} 
 

 Consumer process 
while (TRUE) { 
 entry-section( );         
 while (counter == 0) ; 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
 counter--; 
     computing(); 
 exit-section( ); 
} 

 Incorrect: deadlock, if consumer enters the CS first. 
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Producer/Consumer Problem 

 Producer process 
while (TRUE) { 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
     entry-section( ); 
 counter++; 
     computing(); 
 exit-section( ); 
} 
 

 Consumer process 
while (TRUE) { 
 while (counter == 0); 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
     entry-section( ); 
 counter--; 
     computing(); 
 exit-section( ); 
} 

 Correct but poor performance 
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Producer/Consumer Problem 

 Correct & Maximize concurrent performance 

 Producer process 
while (TRUE) { 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
 entry-section( ); 
 counter++; 
 exit-section( ); 
     computing(); 
} 

 Consumer process 
while (TRUE) { 
 while (counter == 0) ; 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
 entry-section( );         
 counter--; 
 exit-section( ); 
     computing(); 
} 
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Bakery Algorithm (n processes) 
 Before enter its CS, each process receives a # 
 Holder of the smallest # enters CS 
 The numbering scheme always generates # in 

non-decreasing order; i.e., 1,2,3,3,4,5,5,5 
 If processes Pi and Pj receive the same #, if i < j, 

then Pi is served first  
 Notation:  
 (a, b) < (c, d) if a < c or if a == c && b < d 
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Bakery Algorithm (n processes) 
//Process i:  
do { 
   choosing [ i ] = TRUE ; 
   num[ i ] = max(num[0],num[1],…,num[n-1]) + 1; 
   choosing [ i ] = FALSE ; 
   for (j = 0; j < n; j++) { 
      while (choosing [ j ] ) ; 
      while ((num[ j ] != 0) && 
                 ((num[ j ], j) < (num[ i ], i))) ; 
   } 
       critical section 
   num[ i ] = 0 ; 
       reminder section 
} while (1) ; 

 Bounded-waiting because processes enter CS on a 
First-Come, First Served basis 

Get ticket 

FCFS 
Cannot compare when 
num is being modified 

release 
ticket 
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Bakery Algorithm (n processes) 
 Why cannot compare when num is being modified? 
 Without locking… 

 1. Let 5 be the current maximum number 
 2. If P1 and P4 take number together, but P4 finishes before P1 

P1 = 0; P4 = 6  P4 will enter the CS 

 3. After P1 takes the number 
P1 = P4 = 6  P1 will enter the CS as well!!! 

 With locking… 
 P4 will have to wait until P1 finish taking the number 
 Both P1 & P4 will have the new number “6” before comparison 
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Pthread Lock/Mutex Routines 
 To use mutex, it must be declared as of type pthread_mutex_t 

and initialized with pthread_mutex_init() 
 A mutex is destroyed with pthread_mutex_destory() 
 A critical section can then be protected using 

pthread_mutex_lock() and pthread_mutex_unlock() 
 Example:  

specify default 
attribute for the mutex 

#include “pthread.h” 
pthread_mutex   mutex; 
pthread_mutex_init (&mutex, NULL); 
pthread_mutex_lock(&mutex);  // enter critical section 
 
 
pthread_mutex_unlock(&mutex); // leave critical section 
pthread_mutex_destory(&mutex); 

Critical Section 
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Condition Variables (CV) 
 CV represent some condition that a thread can: 

 Wait on, until the condition occurs; or  
 Notify other waiting threads that the condition has occurred 

 Three operations on condition variables: 
 wait() --- Block until another thread calls signal() or broadcast() 

on the CV 
 signal() --- Wake up one thread waiting on the CV 
 broadcast() --- Wake up all threads waiting on the CV 

 In Pthread, CV type is a pthread_cond_t 
 Use pthread_cond_init() to initialize 
 pthread_cond_wait (&theCV, &somelock) 
 pthread_cond_signal (&theCV) 
 pthread_cond_broadcast (&theCV) 
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Using Condition Variable 
 Example: 

 A threads is designed to take action when x=0 
 Another thread is responsible for decrementing the counter 

 
 
 
 
 
 
 

 

 All condition variable operation MUST be performed while a 
mutex is locked!!! 

action() { 
    pthread_mutex_lock (&mutex) 
    if (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 

pthread_cond_t    cond;   pthread_mutex_t    mutex; 
pthread_cond_init (cond, NULL);  pthread_mutex_init (mutex, NULL); 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 

1. Lock mutex 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 

1. Lock mutex 
2. Signal() 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

3. Release the lock 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

3. Release the lock 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 

Another reason why 
condition variable op. 
MUST within mutex lock 
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ThreadPool Implementation 

Operating System Concepts – NTHU LSA Lab 34 

Task structure 
Threadpool structure 

Allocate thread and task queue 

Source: http://swind.code-life.info/posts/c-thread-pool.html 
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ThreadPool Implementation 
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ThreadPool Implementation 
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Synchronization HW 
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Hardware Support 
 The CS problem occurs because the modification 

of a shared variable may be interrupted 

 If disable interrupts when in CS… 
not feasible in multiprocessor machine 
clock interrupts cannot fire in any machine 

 HW support solution: atomic instructions 
atomic: as one uninterruptible unit 
examples: TestAndSet(var), Swap(a,b) 
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Atomic TestAndSet() 

boolean TestAndSet ( bool  &lock) { 
    bool  value = lock ; 
    lock = TRUE ; 
    return value ; 
} 

execute atomically: 
 

do {   // P0 
   while (TestAndSet (lock) ) ; 
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

do {   // P1 
   while (TestAndSet (lock) ) ; 
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

Shared data: boolean lock; //initially lock = FALSE; obtain lock 

return the value of “lock” 
and set “lock” to TRUE 

release lock 

Mutual exclusion?         Progress?         Bounded-Wait? Yes Yes No! 
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Atomic Swap() 

do {  // P0 
   key0 = TRUE;  
   while (key0 == TRUE) 
        Swap (lock, key0) ;  
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

do {  // P1 
   key1 = TRUE;  
   while (key1 == TRUE) 
        Swap (lock, key1) ;  
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

•Idea: enter CS if lock==false: 

Shared data: boolean lock; //initially lock = FALSE; 

Mutual exclusion?         Progress?         Bounded-Wait? Yes Yes No! 
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Review Slide (2) 

 Use software solution to solve CS? 
 Peterson’s and Bakery algorithms 

 Use HW support to solve CS? 
 TestAndTest(), Swap() 
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Semaphores 
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Semaphore 
 A tool to generalize the synchronization problem 

(easier to solve, but no guarantee for correctness) 
 More specifically… 
 a record of how many units of a particular resource 

are available 
If #record = 1  binary semaphore, mutex lock 
If #record > 1  counting semaphore 

 accessed only through 2 atomic ops: wait & signal 
 Spinlock implementation: 
 Semaphore is an integer variable 

wait (S) { 
   while (S <= 0) ; 
   S--; 
} 

signal (S) { 
   S++; 
} busy waiting 
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POSIX Semaphore 
 Semaphore is part of POSIX standard BUT it is not 

belonged to Pthread 
 It can be used with or without thread 

 POSIX Semaphore routines: 
 sem_init(sem_t *sem, int pshared, unsigned int value) 
 sem_wait(sem_t *sem) 
 sem_post(sem_t *sem) 
 sem_getvalue(sem_t *sem, int *valptr) 
 sem_destory(sem_t *sem) 

 Example: 
 

Parallel Programming – NTHU LSA Lab 

Initial value of the semaphore 

Current value of the semaphore 
#include <semaphore.h> 
sem_t  sem; 
sem_init(&sem); 
sem_wait(&sem); 
     // critical section 
sem_post(&sem); 
sem_destory(&sem); 

44 
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n-Process Critical Section Problem 
 shared data: 

semaphore mutex ;  // initially mutex = 1 
 Process Pi: 

do { 
   wait (mutex) ;  // pthread_mutex_lock(&mutex) 
        critical section 
   signal (mutex); // pthread_mutex_unlock(&mutex) 
        remainder section 
} while (1) ; 

Progress? Yes 
Bounded waiting? Depends on the implementation of wait() 
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Non-busy waiting Implementation 
 Semaphore is data struct with a queue 

 may use any queuing strategy (FIFO, FILO, etc) 
 

 
 
 

 wait() and signal()  
 use system calls: block() and wakeup() 
 must be executed atomically 

E.g.,: 
    Value = -3 

L P0 P3 P5 

void wait (semaphore S) { 
    S.value--; // subtract first 
    if (S.value < 0) { 
      add this process to S.L ; 
      sleep( ); 
   } 
} 

void signal (semaphore S) { 
   S.value++; 
   if (S.value <= 0) { 
      remove a process P from S.L ; 
      wakeup(P); 
   } 
} 

typedef struct {   
      int value; // init to 0 
      struct process *L ;  
 // “PCB” queue 
} semaphore ; 
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Atomic Operation 

 How to ensure atomic wait & signal ops? 
Single-processor: disable interrupts  
Multi-processor:  

HW support (e.g. Test-And-Set, Swap) 
SW solution (Peterson’s solution, Bakery algorithm) 
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Semaphore with Critical Section 
void wait (semaphore S) { 
    entry-section( ); 
    S.value--; 
    if (S.value < 0) { 
      add this process to S.L ; 
      exit-section( ); 
      sleep( ); 
   } 
   else { 
      exit-section( ); 
   } 
} 

void signal (semaphore S) { 
   entry-section( ); 
   S.value++; 
   if (S.value <= 0) 
      remove a process P from S.L; 
      exit-section( ); 
      wakeup(P); 
   } 
   else { 
      exit-section( ); 
   } 
} 

 Busy waiting for entry-section()? 
 limited to only the CS of wait & signal (~10 instructions) 
 very short period of time 
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Cooperation Synchronization 
 P1 executes S1 ;  P2 executes S2 
 S2 be executed only after S1 has completed 

 Implementation: 
 shared var:  
      semaphore sync ; // initially sync = 0 

P1: 
S1 ; 
signal (sync) ; 

P2: 
wait (sync) ; 
S2 ; 
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A More Complicated Example 

P1 

P7 

P3 

P6 P5 

P4 

P2 

a b 

c 

f e d 

g h 

(Initially, all semaphores are 0) 
begin 
 P1: S1; signal(a); signal(b); 
 P2: wait(a); S2; signal(c); 
 P3: wait(b); S3; signal(d); 
 P4: wait(c); S4; signal(e); signal(f); 
 P5: wait(e); S5; signal(g); 
 P6: wait(f); wait(d); S6; signal(h); 
 P7: wait(g); wait(h); S7; 
end 
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Deadlocks & Starvation 

 Deadlocks: 2 processes are waiting indefinitely for 
each other to release resources 

 Starvation: example: LIFO queue in semaphore 
process queue 
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Review Slide (3) 

 What’s semaphore? 2 operations? 
 What’s busy-waiting (spinlock) semaphore? 
 What’s non-busy-waiting (non-spinlock) 

semaphore? 
 How to ensure atomic wait & signal ops? 
 Deadlock? starvation? 
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Classical Synchronization 
Problems 
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Listing & Purpose 
 Purpose: used for testing newly proposed 

synchronization scheme 
 Bounded-Buffer (Producer-Consumer) Problem 
 Reader-Writers Problem 
 Dining-Philosopher Problem 
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Bounded-Buffer Problem 
 A pool of n buffers, each capable of holding 

one item 
 Producer:  
 grab an empty buffer 
 place an item into the buffer 
waits if no empty buffer is available 

  Consumer: 
 grab a buffer and retracts the item 
 place the buffer back to the free pool 
waits if all buffers are empty 
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Readers-Writers Problem 
 A set of shared data objects 
 A group of processes 

 reader processes (read shared objects) 
 writer processes (update shared objects) 
 a writer process has exclusive access to a shared object 

 Different variations involving priority 
 first RW problem: no reader will be kept waiting unless a 

writer is updating a shared object 
 second RW problem: once a writer is ready, it performs the 

updates as soon as the shared object is released 
 writer has higher priority than reader 
 once a writer is ready, no new reader may start reading 
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First Reader-Writer Algorithm 
// mutual exclusion for write  
semaphore wrt=1 
// mutual exclusion for readcount 
semaphore mutex=1 
int readcount=0; 
 
Writer(){ 
    while(TRUE){ 
        wait(wrt); 

 // Writer Code 

        signal(wrt); 
    } 
} 

Reader(){ 
  while(TRUE){ 
     wait(mutex); 
         readcount++; 
         if(readcount==1) 
             wait(wrt); 
     signal(mutex); 

 // Reader Code 

     wait(mutex); 
         readcount--; 
         if(readcount==0) 
             signal(wrt); 
     signal(mutex); 
   } 
}  Readers share a single wrt lock 

 Writer may have starvation problem 

Acquire write lock 
if reads haven’t 

release write lock if 
no more reads 
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Dining-Philosophers Problem 
 5 persons sitting on 5 chairs with 5 chopsticks 
 A person is either thinking or eating 

 thinking: no interaction with the rest 4 persons 
 eating: need 2 chopsticks at hand 
 a person picks up 1 chopstick at a time 
 done eating: put down both chopsticks 

 deadlock problem 
 one chopstick as one semaphore 

 starvation problem 
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Monitors 
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Motivation 
 Although semaphores provide a convenient 

and effective synchronization mechanism, its 
correctness is depending on the programmer 
All processes access a shared data object must 

execute wait() and signal() in the right order and 
right place 

 This may not be true because honest 
programming error or uncooperative programmer 
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Monitor --- A high-level language construct 
 The representation of a monitor type consists of  

 declarations of variables whose values define the state of an 
instance of the type 

 Procedures/functions that implement operations on the type 
 The monitor type is similar to a class in O.O. language 

 A procedure within a monitor can access only local variables 
and the formal parameters 

 The local variables of a monitor can be used only by the local 
procedures 

 But, the monitor ensures that only one process at a 
time can be active within the monitor 

 Similar idea is incorporated to many prog. language: 
 concurrent pascal, C# and Java 
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Monitor 
 High-level synchronization construct that allows the 

safe sharing of an abstract data type among 
concurrent processes   

monitor monitor-name { 
 // shared variable declarations
 procedure body P1 (…) { 
  . . . 
 } 
 procedure body P2 (…) { 
  . . . 
 }  
 procedure body Pn (…) { 
   . . . 
 }     
 initialization code { 
 } 
} 

Schematic View Syntax 
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Monitor Condition Variables 
 To allow a process to wait within the monitor, a 

condition variable must be declared, as 
  condition x, y; 
 Condition variable can only be used with the 

operations wait() and signal() 
 x.wait(); 

means that the process invoking this operation is suspended 
until another process invokes 

 x.signal(); 
 resumes exactly one suspended process.  If no process is 

suspended, then the signal operation has no effect 
 (In contrast, signal always change the state of a semaphore) 
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Monitor With Condition Variables 
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Dining Philosophers Example 
 monitor dp { 
  enum {thinking, hungry, eating} state[5]; //current state 
  condition self[5]; //delay eating if can’t obtain chopsticks 
  void pickup(int i)  // pickup chopsticks 
  void putdown(int i)  // putdown chopsticks 
  void test(int i)   // try to eat 
  void init() { 
   for (int i = 0; i < 5; i++) 
    state[i] = thinking; 

  } 
 } 
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void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
  if (state[i] != eating) 
      self[i].wait();//wait to eat 
} 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); 
    test((i+1) % 5); 
} 

//try to let Pi eat (if it is hungry)  
void test(int i) { 
    if ( (state[(i + 4) % 5] != eating) &&(state[(i + 1) % 5] != eating) 
     && (state[i] == hungry) ) { 
  //No neighbors are eating and Pi is hungry 
  state[i] = eating; 
  self[i].signal(); 
 } 
} 

If Pi  is suspended, resume it 
If Pi  is not suspended, no effect 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 



Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 68 

thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
     self[i].wait();//wait to eat 
} hungry 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
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2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
 self[i].wait();//wait to eat 
} eating 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 hungry  self[2].wait 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
 self[i].wait();//wait to eat 
} eating 

P2 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 hungry  self[2].wait 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); test((i+1) % 5); 
} thinking 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 eating  self[2].signal 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); test((i+1) % 5); 
} thinking 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
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3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

thinking 
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Synchronized Tools in JAVA 
 Synchronized Methods (Monitor) 

 Synchronized method uses the method receiver as a lock 
 Two invocations of synchronized methods cannot interleave 

on the same object 
 When one thread is executing a synchronized method for an 

object, all other threads that invoke synchronized methods for 
the same object block until the first thread exist the object 

 
 

 
 

Parallel Programming – NTHU LSA Lab 

public class SynchronizedCounter {  
 private int c = 0;  
 public synchronized void increment() { c++; }  
 public synchronized void decrement() { c--; }  
 public synchronized int value() { return c; }  
} 

74 
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Synchronized Tools in JAVA 
 Synchronized Statement (Mutex Lock) 

 Synchronized blocks uses the expression as a lock 
 A synchronized Statement can only be executed once the 

thread has obtained a lock for the object or the class that has 
been referred to in the statement 

 useful for improving concurrency with fine-grained 
synchronization 

Parallel Programming – NTHU LSA Lab 

public void run()  
{ 
     synchronized(p1) 
     {                       
             int i = 10; // statement without locking requirement 
             p1.display(s1);  
      } 
} 

75 
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Review Slides (4) 
 Bounded-buffer problem? 
 Reader-Writer problem? 
 Dining Philosopher problem? 
 What is monitor and why need monitor? 
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Atomic Transactions 
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System Model 
 Transaction: a collection of instructions  
 (or instructions) that performs a single logic 

function 
 Atomic Transaction: operations happen as a 

single logical unit of work, in its entirely, or 
not at all 

 Atomic transaction is particular a concern for 
database system 
Strong interest to use DB techniques in OS 
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File I/O Example 
 Transaction is a series of read and write 

operations 

 Terminated by commit  (transaction 
successful) or abort (transaction failed) 
operation 

 Aborted transaction must be rolled back to 
undo any changes it performed 
 It is part of the responsibility of the system to 

ensure this property 
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Log-Based Recovery 
 Record to stable storage information about all 

modifications by a transaction 
 Stable storage: never lost its stored data  

 Write-ahead logging: Each log record describes single 
transaction write operation 
 Transaction name 
 Data item name 
 Old & new values 
 Special events: <Ti starts>, <Ti commits> 

 Log is used to reconstruct the state of the data items 
modified by the transactions 
 Use undo (Ti), redo(Ti) to recover data 
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Checkpoints 
 When failure occurs, must consult the log to 

determine which transactions must be re-done 
 Searching process is time consuming 
 Redone may not be necessary for all transactions 

 Use checkpoints to reduce the above overhead: 
Output all log records to stable storage 
Output all modified data to stable storage 
Output a log record <checkpoint> to stable storage 
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Review Slides (5) 
 What is atomic transaction? 
 Purpose of commit, abort, rolled-back? 
 How to use log and checkpoints? 
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Reading Material & HW 
 Chap 6 
 HWs 
 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.9, 6.14, 6.20 
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Backup 
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Case Study:  
 Solaris 2 
 Windows XP 
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Solaris 2 Synchronization 
 Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and 
multiprocessing. 

 Uses adaptive mutexes for efficiency when 
protecting data from short code segments. 
 Mutex and semaphore always serialize data accesses 

 Uses condition variables and readers-writers locks 
when longer sections of code need access to data. 
 Efficient for data that is accessed frequently, but in a read-

only manner 
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Solaris 2 Adaptive Mutex 
 Multiprocessor system 
Data locked (i.e. in use) 

Locking thread is running  requesting thread spins on 
the mutex (spinlock) 
Locking thread is not in run state  requesting thread 
blocks on the mutex (waiting lock) 

 Uniprocessor system 
 Requesting thread always blocks 



Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 88 

Solaris 2 Turnstile 
 Uses turnstiles to order the list of 

threads waiting to acquire either an 
adaptive mutex or reader-writer lock 
 A turnstile is a queue structure  
 containing threads blocked on a lock 

 To prevent a priority inversion, 
turnstiles are organized according to a 
priority-inheritance protocol 
 Temporarily inherit the priority of the 

high-priority thread (blocked on this lock) 
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XP Synchronization 
 Use interrupt masks to protect access to global 

resources on uniprocessor systems (disable interrupt) 
 Uses spinlocks on multiprocessor system 
 Dispatcher objects: either in signaled or nonsignaled 

state 
 Signaled: object is available immediately 
 Nonsignaled: object is not available 
 Thread queue associated with each object 
 WaitForSingleObject or WaitForMultipleObjects 
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